C/EBP-β Regulates Endoplasmic Reticulum Stress–Triggered Cell Death in Mouse and Human Models
نویسندگان
چکیده
Endoplasmic reticulum (ER) stress elicits the unfolded protein response (UPR), initially aimed at coping with the stress, but triggering cell death upon further stress. ER stress induces the C/EBP-beta variant Liver-enriched Activating Protein (LAP), followed by the dominant-negative variant, Liver Inhibitory Protein (LIP). However, the distinct role of LAP and LIP in ER stress is unknown. We found that the kinetics of the ER stress-induced expression of LIP overlapped with that of the cell death in mouse B16 melanoma cells. Furthermore, inducible over-expression of LIP augmented ER stress-triggered cell death whereas over-expression of LAP attenuated cell death. Similar results were obtained in human 293T cells. Limited vasculature in tumors triggers hypoxia, nutrient shortage and accumulation of toxic metabolites, all of which eliciting continuous ER stress. We found that LAP promoted and LIP inhibited B16 melanoma tumor progression without affecting angiogenesis or accelerating the cell cycle. Rather, LAP attenuated, whereas LIP augmented tumor ER stress. We therefore suggest that C/EBP-beta regulates the transition from the protective to the death-promoting phase of the UPR. We further suggest that the over-expression of LAP observed in many solid tumors promotes tumor progression by attenuating ER stress-triggered tumor cell death [corrected].
منابع مشابه
Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling
Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...
متن کاملThe Apoptosis Inhibitor ARC Alleviates the ER Stress Response to Promote β-Cell Survival
Type 2 diabetes involves insulin resistance and β-cell failure leading to inadequate insulin secretion. An important component of β-cell failure is cell loss by apoptosis. Apoptosis repressor with caspase recruitment domain (ARC) is an inhibitor of apoptosis that is expressed in cardiac and skeletal myocytes and neurons. ARC possesses the unusual property of antagonizing both the extrinsic (dea...
متن کاملC/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells
Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein β (C/EBP β), a member ...
متن کاملCytokine-Induced β-Cell Death Is Independent of Endoplasmic Reticulum Stress Signaling
OBJECTIVE Cytokines contribute to beta-cell destruction in type 1 diabetes. Endoplasmic reticulum (ER) stress-mediated apoptosis has been proposed as a mechanism for beta-cell death. We tested whether ER stress was necessary for cytokine-induced beta-cell death and also whether ER stress gene activation was present in beta-cells of the NOD mouse model of type 1 diabetes. RESEARCH DESIGN AND M...
متن کاملCHANGES OF PERK AND CHOP PROTEINS IN ENDOPLASMIC RETICULUM OF CARDIAC MYOCYTES AND TNF IN DIABETIC WISTAR RATS FOLLOWING CONTINUOUS AND INTERVAL EXERCISE
Background: Physical activity plays a major role in the prevention of cardiovascular disease and diabetes, but the effect of intense activity on endoplasmic reticulum proteins and apoptosis and necroptosis in diabetic conditions is unclear. The aim of the present study was to investigate the changes of PERK and CHOP proteins in endoplasmic reticulum of cardiac myocytes of diabetic Wistar rats f...
متن کامل